

# Wet scavenging of aerosols and surface ozone in a semi-arid region (Arizona)

Grace Betito<sup>1</sup>, Avelino Arellano<sup>1,2</sup>, Armin Sorooshian<sup>1,2</sup>

<sup>1</sup>Department of Hydrology and Atmospheric Sciences, University of Arizona, <sup>2</sup>Department of Chemical and Environmental Engineering, University of Arizona

## INTRODUCTION

**Motivation:** The semi-arid climate of Arizona, characterized by distinct seasonal precipitation, presents unique challenges in understanding how precipitation influences air pollutants such as particulate matter (PM) and surface ozone  $(O_3)$ .

Science Question: What are the relationships between precipitation and  $PM_{25}$ , aerosol optical depth (AOD<sub>500nm</sub>), Angstrom Exponent (AE<sub>440-870nm</sub>), and O<sub>3</sub> across Tucson, Arizona's two seasons with most precipitation (winter and summer)?

#### **METHODS**

## **Dataset: Tucson (Children's Park)**

- US EPA hourly  $O_3$ ,  $PM_{25}$ , and AZMET precipitation data
- AERONET Level 2.0 AOD<sub>500nm</sub> and AE<sub>440-870nm</sub> data (2015-



# **RESULTS: Monthly and diurnal profiles**



#### **Data Analysis:**

- Identify rain events and calculate the means for a 48-hr averaging window before and after rain events.
- Calculate percent difference ( $\Delta$ %) between PM<sub>2.5</sub>, O<sub>3</sub>,  $AOD_{500nm}$ , and  $AE_{440-870nm}$  before and after each rain event. C = Concentration.

 $\Delta\% = \frac{C_{after} - C_{before}}{C_{before}} \times 100\%$ 

Perform curve-fitting based on simple exponential decay function:

 $y = be^{-ax}$ 

where x is the meteorological variable, y is the aerosol variable, and *a* and *b* depend on aerosol characteristics which can be linearized such that *a* and ln*b* are interpretable as slope and intercept, respectively.

Figure 1. Map showing Tucson, Arizona, and sites collecting data. Other sites shown are intended for future work.



**Figure 2. (left)** Monthly profiles of precipitation, PM<sub>2.5</sub>, O<sub>3</sub>, AOD<sub>500nm</sub>, and AE<sub>440-870nm</sub> in Tucson. (middle) Diurnal comparison during the winter (DJF) and monsoon summer (JJAS) seasons. (right) Number of valid rain event cases for a 48-hr averaging window before and after rain.

## **RESULTS: Comparisons before versus after rain using 48-hr averaging window**





Figure 3a. Median values are generally higher pre-rain compared to after (except for AE<sub>440-870nm</sub>). However, dividing the data into winter and summer seasons reveal contrasting results. **Figure 3b.** Increase in  $PM_{2.5}$ ,  $O_3$ ,  $AOD_{500nm}$ , and  $AE_{440-870nm}$  post-rain during the winter possibly due to resuspension or local pollution sources.

**Figure 3c.** PM<sub>2,5</sub>, O<sub>3</sub>, and AOD<sub>500nm</sub> tend to decrease post-rain at lower rain rate during the monsoon summer.

**Figure 4 (right).** Scatterplots of the percent difference ( $\Delta$ %) as a function of rain duration (h) and colored by season. Data are stratified by rain rate (R; mm h<sup>-1</sup>). Number of data points (N) and scatter index (SI) is provided.



#### **Future Work:**

- Investigate other meteorological variables that could affect the removal of air pollutants during rain periods
- Look at different averaging time windows
- Present case studies for summer and winter
- Perform similar analyses for other sites in Arizona

## **Acknowledgments:**

- NASA grant 80NSSC22K1789 and the NASA program for Increasing Participation of Minority Serving Institutions in Earth Science Division Surface-Based Measurement Networks.
- Arizona Board of Regents (ABOR) Regent's Grant from the Technology and Research Initiative Fund (TRIF)
- GSFC for the travel grant
- US Environmental Protection Agency (EPA) Air Quality Systems (AQS)